A Comparative Study of Face Authentication Using Euclidean and Mahalanobis Distance Classification Method

نویسنده

  • Arun Kumar
چکیده

In face recognition feature extraction and classification are the two aspects to be focused. In principle component analysis (PCA) based face recognition technique, the 2D face image matrices must be previously transformed in to one dimensional image vectors. In this paper two dimensional principle component analysis(2DPCA) is used to extract the features. Comparing to conventional principle component analysis, two dimensional principle component analysis is based on 2D matrices rather than 1D vectors. The image matrix is formed directly using original image matrices Recognition rate seems to be higher using two dimensional principle component analysis. The Mahalanobis distance is a metric which is better adapted than the usual Euclidean distance to settings involving non spherically symmetric distribution.Recall, precision, fmeasure, recognition rate are calculated and the results are analyzed for Oracle Research Laboratory (ORL) database and for the database taken using normal digital camera. This paper includes the comparison of Euclidean and Mahalanobis Distance classification methods and analyze the results. Keywordsfmeasure , precision, recall, recognition rate, Two dimensional principle component analysis(2DPCA)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Text-Independent Speaker Identification using Statistical Features

This paper concerns a comparative study on long term text-independent speaker identification using statistical features. Performances of six statistical methods are compared. Four of them are the distance measures (the City block, the Euclidean, the Weighted Euclidean, and the Mahalanobis distance measures). The other two are the Gaussian probability density estimation and the probability estim...

متن کامل

Face Authentication using Euclidean Distance Model with PSO Algorithm

In recent technological world lot of devices are invented. Moreover the focused topic is on security system. Even with lot of security system like finger print based, eye-retina based, pin-code based systems are available, face recognition based security system has vital role of advanced technology. Feature based Face authentication requires feature extraction, feature selection and classificat...

متن کامل

Investigating Distance Metrics in Semi-supervised Fuzzy c-Means for Breast Cancer Classification

In previous work, semi-supervised Fuzzy c-means (ssFCM) was used as an automatic classification technique to classify the Nottingham Tenovus Breast Cancer (NTBC) dataset as no method to do this currently exists. However, the results were poor when compared with semi-manual classification. It is known that the NTBC data is highly non-normal and it was suspected that this affected the poor result...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013